
主讲教师：汪红松

数据结构
（C语言版）（第2版）

栈和队列

教 学 内 容

栈和队列基本概念

栈的表示和操作

栈与递归

队列的表示和操作

Contents

老师
一、循环队列
二、链队列

0}n ,,,2,1,|{  niElemSetaaD ii 数据对象:

数据关系:
端为队列尾端为队列头约定 n1

111

a,a
},,2,1,,| ,{ niDaaaaR iiii  

基本操作:

 (1) InitQueue (&Q) //构造空队列
 (2) DestroyQueue (&Q) //销毁队列
 (3) ClearQueue (&S) //清空队列
 (4) QueueEmpty(S) //判空. 空--TRUE,

ADT Queue {

队列的抽象数据类型

 (5) QueueLength(Q) //取队列长度
 (6) GetHead (Q,&e) //取队头元素,
 (7) EnQueue (&Q,e) //入队列
 (8) DeQueue (&Q,&e) //出队列
 (9) QueueTraverse(Q,visit()) //遍历
}ADT Queue

队列的抽象数据类型

队列的顺序表示－－用一维数组base[M]

#define M 100 //最大队列长度

Typedef struct {

 QElemType *base; //初始化的动态分配存储空间

 int front; //头指针

 int rear; //尾指针

}SqQueue;

队列的顺序表示－－用一维数组base[M]

Q.front 0

1

2

3

4

5

Q.rear

Q.front

Q.rear

J1

J2

J3 Q.front

Q.rear

J3

空队标志：front= =rear
入队：base[rear++]=x;
出队：x=base[front++];

Q.front

Q.rear

J5
J6

Q.front0
1
2

3
4
5

Q.rear

J5
J6

J1
J2

J3
J4

存在的问题

设大小为M

front = 0
rear = M 时
再入队—真溢出

front > 0
rear = M 时
再入队—假溢出

解决的方法——循环队列

1

0

Q.rear

Q.front

...
...

base[0]接在base[M-1]之后
若rear+1==M
则令rear=0;

实现：利用“模”运算
入队：
 base[rear]=x;
 rear=(rear+1)%M;
出队：
 x=base[front];
 front=(front+1)%M;

J4
J5

J6
0
1

2
3
4

5

rear
front

J9
J8

J7

J7,J8,J9入队

队空：front==rear
队满：front==rear

解决方案：
1.另外设一个标志以区别队空、队满
2.少用一个元素空间：
 队空：front==rear
 队满：(rear+1)%M==front

J4
J5

J6
0
1

2
3
4

5

rear

front

0
1

2
3
4

5

front

J4,J5,J6出队
rear

解决的方法——循环队列

一、循环队列

一般情况 队空：front==rear 队满：(rear+1)%M==front

Status InitQueue (SqQueue &Q){
 Q.base =new QElemType[MAXQSIZE]
 if(!Q.base) exit(OVERFLOW);
 Q.front=Q.rear=0;
 return OK;
}

一、循环队列

int QueueLength (SqQueue Q){
 return (Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;
 }

一、循环队列

Status EnQueue(SqQueue &Q,QElemType e){
 if((Q.rear+1)%MAXQSIZE==Q.front) return ERROR;
 Q.base[Q.rear]=e;
 Q.rear=(Q.rear+1)%MAXQSIZE;
 return OK;
}

一、循环队列

Status DeQueue (LinkQueue &Q,QElemType &e){
 if(Q.front==Q.rear) return ERROR;
 e=Q.base[Q.front];
 Q.front=(Q.front+1)%MAXQSIZE;
 return OK;
}

4.循环队列出队

一、循环队列

 naaa ,,, 21 

.

.

.

data next

队头

队尾

Q.front

Q.rear

二、链队列

typedef struct QNode{
 QElemType data;
 struct Qnode *next;
}Qnode, *QueuePtr;

typedef struct {
 QueuePtr front; //队头指针
 QueuePtr rear; //队尾指针
}LinkQueue;

二、链队列

Status InitQueue (LinkQueue &Q){
 Q.front=Q.rear=(QueuePtr) malloc(sizeof(QNode));
 if(!Q.front) exit(OVERFLOW);
 Q.front->next=NULL;
 return OK;
}

Q.front

Q.rear

二、链队列

Status DestroyQueue (LinkQueue &Q){
 while(Q.front){
 Q.rear=Q.front->next;
 free(Q.front);
 Q.front=Q.rear; }
 return OK;
}

二、链队列

 Status QueueEmpty (LinkQueue Q)
{
 return (Q.front==Q.rear);
 }

二、链队列

Status GetHead (LinkQueue Q, QElemType &e){
 if(Q.front==Q.rear) return ERROR;
 e=Q.front->next->data;
 return OK;
}

二、链队列

Status EnQueue(LinkQueue &Q,QElemType e){
 p=(QueuePtr)malloc(sizeof(QNode));
 if(!p) exit(OVERFLOW);
 p->data=e; p->next=NULL;
 Q.rear->next=p;
 Q.rear=p;
 return OK;
}

Q.front

Q.rear

x y

p

二、链队列

Status DeQueue (LinkQueue &Q,QElemType &e){
 if(Q.front==Q.rear) return ERROR;
 p=Q.front->next;
 e=p->data;
 Q.front->next=p->next;
 if(Q.rear==p) Q.rear=Q.front;
 delete p;
 return OK;
}

Q.front

Q.rear

x y

p

二、链队列

小结

1. 队列的表示和操作，包括队列的顺序表示和列链式表示
2. 两种队列的初始化、判断队列是否为空或是否为满、求

队列长度、入队和出队等操作

